29-30 January, 2020 - Szeged, Hungary


Abstract details

In vivo infrared neural stimulation and inhibition using an implantable microdevice


Á.Cs. Horváth123, S. Borbély45, Ö.C. Boros6, L. Komáromi6, P. Koppa6, P.Barthó4, Z. Fekete12

1 Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary

2 Microsystems Laboratory, Institute for Technical Physics & Material Science, Centre for Energy Research, Hungarian Academy of Science, Budapest, Hungary

3 Óbuda University Doctoral School on Materials Sciences and Technologies, Budapest, Hungary

4 MTA TTK NAP Sleep Oscillations Research Group, Budapest, Hungary

5 Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary

6 Department of Atomic Physics, Budapest University of Technology & Economics, Budapest, Hungary

Brain is one of the most temperature sensitive organs. Besides the fundamental role of temperature in cellular metabolism, thermal response of neuronal populations is also significant during the evolution of various neurodegenerative diseases. As such critical environmental factor, thorough mapping of cellular response to variations in temperature is desired in the living brain. So far, limited efforts have been made to create complex devices that are able to modulate temperature, and concurrently record multiple features of the stimulated region. In our work, the in vivo application of a multimodal photonic neural probe is demonstrated. Optical, thermal and electrophysiological functions are monolithically integrated in a single device. The system facilitates spatial and temporal control of temperature distribution at high precision in the deep brain tissue through an embedded infrared waveguide, while it provides recording of the artefact-free electrical response of individual cells at multiple locations along the probe shaft. Spatial distribution of the optically induced temperature changes is evaluated through in vitro measurements and a validated multi-physical model. The operation of the multimodal microdevice is demonstrated in the rat neocortex and in the hippocampus to increase or suppress firing rate of stimulated neurons in a reversible manner using continuous wave infrared light (λ = 1550 nm). Our approach is envisioned to be a promising candidate as an advanced experimental toolset to reveal thermally evoked responses in the deep neural tissue.